Streamwood High School AIM 1 Scope and Sequence 2022-2023

Unit/Reporting Task	Instructional Focus	Standards	Pacing	
	Solving Equations & Inequalities	A.SSE.1, A.REI.3		
Unit 1: Relationships Between Quantities	Creating Equations & Inequalities	A.CED.1, A.CED.2, A.CED.3, N.Q.1, N.Q.2, N.Q.3	5 weeks	
	Literal Equations	A.CED.4, A.REI.3		
Unit 2: Linear and	Identifying, Evaluating, & Applications of Functions	F.IF.1, F.IF.2, F.IF.3, F.BF.2, F.LE.1, F.LE.5	5	
Exponential Relationships	Linear & Exponential Functions	F.BF.1,F.LE.2, F.LE.3, F.IF.6, F.IF.9	weeks	
Unit 3: Key Features &	Key Features of Graphs	F.IF.4, F.IF.5, F.IF.6, F.IF.9, F.BF.3	4 weeks	
Sketching Graphs	Sketching Graphs	A.REI.10, A.REI.12, F.IF.7	weeks	
Unit 4: Reasoning with	Solving Systems of Equations & Inequalities	A.REI.1, A.REI.5, A.REI.6, A.REI.11	4 weeks	
Equations	Applications of Systems of Equations & Inequalities	A.CED.2, A.REI.5, A.REI.6		
Unit 5: Descriptive	Representing and Analyzing Data	S.ID.1, S.ID.2, S.ID.3, S.ID.5,	4	
Statistics	Interpret Linear Models	S.ID.6, S.ID.7, S.ID.8, S.ID.9	weeks	
Unit 6: Transformations	Transformations	G.CO.1, G.CO.2, G.CO.3, G.CO.4, G.CO.5, SRT.1	5 weeks	
Unit 7: Congruence	Congruence	G.CO.6, G.CO.7, G.CO.8	4 weeks	
Unit 8: Connecting	Parallel and Perpendicular Lines	G.GPE.4, G.GPE.5 G.CO.12, G.CO.13	5	
Algebra and Geometry			weeks	

Unit 1 Relationships Between Quantities

A. Solving Equations & Inequalities

CCSS	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Interpret expressions and equations (A.SSE.1*)	ns beyond the standard, including tasks that may involve one of the	Interpret individual and groups of parts of an expression (such as variables, coefficients, factors, etc.) in terms of a given context.	Identify groups in an expression and Interpret individual parts of an expression (such as variables, coefficients, factors, etc.) in terms of a given context.	Identify individual parts of an expression (such as variables, coefficients, factors, etc.)	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1
Solve equations and inequalities (A.REI.3)	 Connecting Synthesizing Applying Justifying Critiquing Analyzing Creating Proving 	Solve linear equations and inequalities with rational numbers and variables on both sides, that requires distributing and combining like terms.	Solve linear equations and inequalities with rational numbers and variables on both sides, that requires distributing or combining like terms.	Solve linear equations and inequalities with rational numbers and variables on both sides.	

A.SSE.1* Interpret expressions that represent a quantity in terms of its context.

a. Interpret parts of an expression, such as terms, factors, and coefficients.

b. Interpret complicated expressions by viewing one or more of their parts as a single entity.

A.REI.3 Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.

Unit 1: Relationships Between Quantities

В. (Creating	Equations	&	Inequalities
------	----------	-----------	---	--------------

CCSS	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Create equations and inequalities (A.CED.1*) Create systems of equations (A.CED.2*)	Can extend thinking beyond the standard, including tasks that may involve one of the following: Designing Connecting Synthesizing Applying Justifying Critiquing Analyzing Creating Proving	Create linear equations and inequalities with one variable and use them in a contextual situation and solve problems. Create a system of equations to model a situation	<u>Create</u> linear equations or inequalities with one variable and use them in a contextual situation and solve problems. <u>Create</u> a system of equations to model a situation	Identify linear equations <u>or</u> inequalities with one variable to represent a contextual situation and use them to solve problems. Identify a system of equations to model a situation	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1
Represent constraints and interpret solutions (A.CED.3*)		Write the constraints for a contextual situation Interpret solutions as viable or nonviable options in context of the situation.	<u>Write</u> the constraints for a contextual situation Identify solutions <u>in</u> <u>context of the situation.</u>	Identify the constraints for a contextual situation Identify solutions	

A.CED.1* Create equations and inequalities in one variable and use them to solve problems

- A.CED.2* Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.
- A.CED.3* Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context.

Unit 1: Relationships Between Quantities

C. Literal Equations

ccss	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Solve and rewrite literal equations (A.REI.3, A.CED.4*)	Can extend thinking beyond the standard, including tasks that may involve one of the following: Designing Connecting Synthesizing Applying Justifying Critiquing Analyzing Creating Proving	Solve multi-step literal equations involving more than 2 variables <u>in</u> <u>contextual situations</u>	Solve multi-step literal equations involving <u>more than 2 variables</u>	Solve multi-step literal equations involving <u>2</u> <u>variables</u>	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1

A.REI.3 Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.

A.CED.4* Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.

Unit 2: Linear and Exponential Equations

A. Identifying,	Evaluating	& Application	s of Functions
A. Identifying,	Lvaluating,	& Application	3 01 1 0110113

ccss	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Understand functions (F.IF.1)	Can extend thinking beyond the standard, including tasks that may involve one of the following: Designing Connecting Synthesizing Applying	Determine and explain if a relation, graph <u>and</u> table are functions Use the different terminology that describes the x values (domain, input) and the y values (output, f(x)) to find the domain and range from a table, relation, <u>and</u> graph.	Determine <u>and explain</u> if a relation, graph or table are functions (<u>2 of the 3</u>) <u>Use</u> the different terminology that describes the x values (domain, input) and the y values (output, f(x)) to find the domain and range <u>from a table</u> , <u>relation, or graph.</u>	Determine if a relation, graph <u>or</u> table are functions (2 of the 3) Identify the different terminology that describes the x values (domain, input) and the y values (output, f(x))	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1
Use function notation (F.IF.2)	 Justifying Critiquing Analyzing Creating Proving 	Use function notation and the values in the domain to calculate the values in the range from a table, graph, and equation <u>and interpret</u> <u>statements using function</u> <u>notation in context of a</u> <u>given situation</u>	Use function notation and the values in the domain to calculate the values in the range from a table, graph, <u>and</u> equation	Use function notation and the values in the domain to calculate the values in the range from a table, graph, <u>or</u> equation	
Construct linear and exponential functions (F.BF.2*, F.IF.3, F.LE.1)		Distinguish between linear and exponential functions from arithmetic and geometric sequences, tables, graphs, and <u>real world situations</u> Write the recursive function and the function rule for linear and exponential functions <u>to</u> <u>model real world situations.</u>	Distinguish between linear and exponential functions from arithmetic and geometric sequences, tables, and graphs. <u>Write the recursive function</u> <u>and the function rule</u> for linear and exponential functions from arithmetic and geometric sequences and tables.	Distinguish between linear and exponential functions from arithmetic and geometric sequences, tables, and graphs. Identify the common difference/common ratio for linear and exponential functions from arithmetic and geometric sequences and from tables.	
Identify and compare key features (F.LE.5)		Identify and compare key features of two functions represented in <u>all</u> of the following ways	Identify and compare key features of two functions represented in <u>three</u> of the following ways	Identify and compare key features of two functions represented in <u>two</u> of the following ways	

F.IF.1 Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x. The graph of f is the graph of the equation y = f(x).

- F.IF.2 Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.
- F.BF.2* Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms. *(Modeling Standard)
- F.IF.3 Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by f(0) = f(1) = 1, f(n+1) = f(n) + f(n-1) for $n \ge 1$.
- F.LE.1* Distinguish between situations that can be modeled with linear functions and with exponential functions. *(Modeling Standard)

a. Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals.

b. Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.

c. Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to er

another

F.LE.5* Interpret the parameters in a linear or exponential function in terms of a context. *(Modeling Standard)

Unit 2: Linear and Exponential Equations

B. Linear & Exponential Functions

CCSS	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Construct linear and exponential functions (F.BF.1, F.LE.2)	Can extend thinking beyond the standard, including tasks that may involve one of the following: Designing Connecting Synthesizing Applying	Distinguish between linear and exponential functions from arithmetic and geometric sequences, tables, graphs, and <u>real</u> world situations Write the recursive function and the function rule for linear and exponential functions <u>to</u> model real world situations.	Distinguish between linear and exponential functions from arithmetic and geometric sequences, tables, and graphs. Write the recursive function and the function rule for linear and exponential functions from arithmetic and geometric sequences and tables.	Distinguish between linear and exponential functions from arithmetic and geometric sequences, tables, and graphs. Identify the common difference/common ratio for linear and exponential functions from arithmetic and geometric sequences and from tables.	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1
Calculate and interpret rate of change (F.LE.3)	 Justifying Critiquing Analyzing Creating Proving 	Calculate the average rate of change over a given interval and explain the meaning in context for linear and exponential functions presented symbolically, in a table, <u>and</u> in a graph <u>Describe that an increasing</u> <u>exponential function will</u> <u>eventually exceed a linear</u> <u>function</u>	Calculate the average rate of change over a given interval <u>and explain the</u> <u>meaning in context</u> for linear and exponential functions presented symbolically, in a table, or in a graph	Calculate the average rate of change over a given interval for linear and exponential functions presented symbolically, in a table, or in a graph	
Create and graph equations (F.IF.7)		Create equations in two or more variables to represent relationships in contextual situations Graph exponential functions expressed in symbolic form and show key features of the graph (including labels and scales on the graph)	<u>Create</u> equations in two or more variables to represent relationships in contextual situations Graph exponential functions expressed in symbolic form <u>and show</u> <u>key features of the graph</u>	Identify equations in two or more variables to represent relationships in contextual situations Graph exponential functions expressed in symbolic form	
Identify and compare key features (F.IF.9)		Identify and compare key features of two functions represented in <u>all</u> of the following ways	Identify and compare key features of two functions represented in <u>three</u> of the following ways algebraically graphically tables in context	Identify and compare key features of two functions represented in <u>two</u> of the following ways	
Identify transformations (F.BF.3)		Identify the effect on a graph by replacing f(x) with a single transformation:	Identify the effect on a graph by replacing f(x) with a single transformation (3 of the 4): • f(x) + k • k f(x), • f(kx) • f(x + k)	Identify the effect on a graph by replacing $f(x)$ with a single transformation (2 of the 4): • $f(x) + k$ • $k f(x)$, • $f(kx)$ • $f(kx)$ • $f(x + k)$	

for specific positive and negative values of k	for specific positive and negative values of k	for specific positive and negative values of k
Given the graph of a	Given the graph of a	Given the graph of a
function and a single	function and a single	function and a single
transformation <u>(for all</u>	transformation (<u>3 of the 4</u>	transformation (<u>2 of the 4</u>
<u>listed above</u>), find the	<u>listed above</u>), find the	<u>listed above</u>), find the
value of the constant or	value of the constant or	value of the constant or
coefficient	coefficient	coefficient

- F.BF.1 Write a function that describes a relationship between two quantities. a. Determine an explicit expression, a recursive process or steps for calculation from a context.
- F.LE.2* Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table). *(Modeling Standard)
- F.LE.3* Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function. *(Modeling Standard)
- F.IF.9* Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.
- F.BF.3 Identify the effect on the graph of replacing f(x) by f(x + k), k f(x), f(kx) and f(x) + k, for specific values of k (both negative and positive); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.
- F.IF.7 Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude

Unit 2b: Key Features & Sketching Graphs

A. Key Features of Graphs

CCSS	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Identify and compare key features (F.IF.4, F.IF.5) Identify transformations	Can extend thinking beyond the standard, including tasks that may involve one of the following: Designing Connecting	Identify and compare key features of two functions represented in <u>all</u> of the following ways	Identify and compare key features of two functions represented in <u>three</u> of the following ways	Identify and compare key features of two functions represented in <u>two</u> of the following ways	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a
(F.BF.3)	 Synthesizing Applying Justifying Critiquing Analyzing Creating Proving 	a single transformation: • $f(x) + k$ • $k f(x),$ • $f(kx)$ • $f(x + k)$ for specific positive and negative values of k Given the graph of a function and a single transformation (for all listed above), find the value of the constant or coefficient	a single transformation (3 of the 4): f(x) + k k f(x), f(kx) f(x+k) for specific positive and negative values of k Given the graph of a function and a single transformation (3 of the 4 listed above), find the value of the constant or coefficient	a single transformation (2 of the 4): f(x) + k k f(x), f(kx) of (kx) of (x + k) for specific positive and negative values of k Given the graph of a function and a single transformation (2 of the 4 listed above), find the value of the constant or coefficient	criteria in a level 1
Calculate and interpret rate of change (F.IF.6*)		Calculate the average rate of change over a given interval and explain the meaning in context for linear and exponential functions presented in symbolic, table <u>and</u> graph form	Calculate the average rate of change over a given interval <u>and explain</u> <u>the meaning in context</u> for linear and exponential functions presented in symbolic, table <u>or</u> graph form	Calculate the average rate of change over a given interval for linear and exponential functions presented in symbolic, table <u>or</u> graph form	

- F.BF.3 Identify the effect on the graph of replacing f(x) by f(x + k), k f(x), f(kx) and f(x) + k, for specific values of k (both negative and positive); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.
- F.IF.4 For a linear, exponential, or quadratic function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; and end behavior. *
- F.IF.5 Relate the domain of a linear, exponential, or quadratic function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function h(n) gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function. *
- F.IF.6* Calculate and interpret the average rate of change of a linear, exponential, or quadratic function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph of a function over a specified interval. *

Unit 2b: Key Features & Sketching Graphs

B. Sketching Graphs

CCSS		4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Understand solutions (A.REI.10)	bey star task invo	extend thinking ond the ndard, including ss that may plve one of the pwing:	Explain that all solutions to an equation in two variables are contained on the graph of that equation	Verifies that <u>multiple</u> <u>solutions</u> to an equation in two variables are contained on the graph of that equation.	<u>Verifies</u> that <u>one solution</u> to an equation in two variables is contained on the graph of that equation.	Little evidence of reasoning or application to solve the problem
Explaining solutions (A.REI.11*)	•	Designing Connecting Synthesizing Applying	Explain a solution to a system of equations (algebraically, graphically, or with tables) <u>in context of a</u> given situation	Explain a solution to a system of equations (algebraically, graphically, or with tables)	Verify solutions to a system of equations (algebraically, graphically, or with tables)	Does not meet the criteria in a level 1
Graph inequalities and systems of Inequalities (A.REI.12)	•	Justifying Critiquing Analyzing Creating Proving	Graph a system of linear inequalities in two variables from contextual situations (standard form) and identify the solution set.	Graph <u>a system of linear</u> inequalities in two variables from contextual situations (slope intercept form) and identify the solution set.	Graph <u>a linear inequality</u> in two variables from contextual situations (slope intercept form) and identify the solution set.	

- A.REI.10 Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).
- A.REI.11* Explain why the x-coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x); find solutions to f(x) = g(x) approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where f(x) and/or g(x) are linear, quadratic, or exponential functions. *(Modeling Standard).
- A.REI.12 Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the

Unit 3: Reasoning with Equations

A. Solving Systems of Equations & Inequalities

CCSS	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Explain steps to solving (A.REI.1) Solve systems of equations (A.REI.6)	Can extend thinking beyond the standard, including tasks that may involve one of the following: Designing Connecting Synthesizing Applying Justifying Critiquing Analyzing Creating Proving	Explain each step in solving an equation using properties of equality <u>and justify the</u> <u>solution method</u> Solve a system of linear equations approximately (graphing <u>with labels</u> <u>and scales</u>) and exactly (algebraically) when multiplication or rearranging is necessary	Explain each step in solving an equation using properties of equality. Solve a system of linear equations approximately (graphing) and exactly (algebraically) <u>when</u> <u>multiplication or</u> <u>rearranging is</u> <u>necessary</u>	Identify/match properties of equality used for each step in solving an equation. Solve a system of linear equations approximately (graphing) and exactly (algebraically)	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1
Explaining solutions (A.REI.5, A.REI.11*)		Explain a solution to a system of equations (algebraically, graphically, or with tables) <u>in context of a</u> given situation	Explain a solution to a system of equations (algebraically, graphically, or with tables)	Verify solutions to a system of equations (algebraically, graphically, or with tables)	

A.REI.1 Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.

- A.REI.6 Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.
- A.REI.5 Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions
- A.REI.11* Explain why the x-coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x); find solutions to f(x) = g(x) approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where f(x) and/or g(x) are linear, quadratic, or exponential functions. *(Modeling Standard)

Unit 3: Reasoning with Equations

B. Applications of Systems of Equations & Inequalities

CCSS	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Create systems of equations (A.CED.2*)	Can extend thinking beyond the standard, including tasks that may involve one of the following:	Create a system of equations to model a situation	<u>Create</u> a system of equations to model a situation	Identify a system of equations to model a situation	Little evidence of reasoning or application to solve the problem
Solve systems of equations (A.REI.6)	 Designing Connecting Synthesizing Applying Justifying Critiquing Analyzing Creating Proving 	Solve a system of linear equations approximately (graphin <u>g with labels</u> <u>and scales</u>) and exactly (algebraically) when multiplication or rearranging is necessary	Solve a system of linear equations approximately (graphing) and exactly (algebraically) <u>when</u> <u>multiplication or</u> <u>rearranging is necessary</u>	Solve a system of linear equations approximately (graphing) and exactly (algebraically	Does not meet the criteria in a level 1
Explaining solutions (A.REI.5)		Explain a solution to a system of equations (algebraically, graphically, or with tables) <u>in context of a</u> <u>given situation</u>	Explain a solution to a system of equations (algebraically, graphically, or with tables)	Verify solutions to a system of equations (algebraically, graphically, or with tables)	

A.CED.2* Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.

- A.REI.5 Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions
- A.REI.6 Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.

Unit 4: Descriptive Statistics

A. Representing and Analyzing Data

ccss	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Represent data (S.ID.1*)	Can extend thinking beyond the standard, including tasks that may involve one of the following:	Represent data with plots on the real number line using <u>all of</u> the following models: • Dot plot • Histograms • Box plots	Represent data with plots on the real number line using <u>two</u> of the following models: • Dot plot • Histograms • Box plots	Represent data with plots on the real number line using <u>one</u> of the following models: • Dot plot • Histograms • Box plots	Little evidence of reasoning or application to solve the problem
Compare center and spread (S.ID.2*)	 Designing Connecting Synthesizing Applying Justifying Critiquing Analyzing Creating Proving 	Use statistics appropriate to the data to <u>compare</u> center (median, mean) and spread (interquartile range, standard deviation) of two or more data sets.	Calculates the center (median, mean) and spread (interquartile range, standard deviation) of two or more data sets.	Calculates center (median, mode) <u>or</u> spread (interquartile range, standard deviation) of two or more data sets.	Does not meet the criteria in a level 1
Interpret data (S.ID.3*)	 Proving 	Interpret differences in shape, center and spread <u>in the context</u> of the data sets accounting for possible effects of extreme data points (outliers)	Interpret differences in shape, center and spread <u>accounting for possible</u> <u>effects of extreme data</u> <u>points (outliers)</u>	Interpret differences in shape, center and spread.	-
Create and analyze scatter plots (S.ID.6)		Represent data on two quantitative variables on a scatter plot, fit a function to the data <u>and use the</u> <u>function to solve problems</u> <u>in context of the data</u>	Represent data on a scatter plot <u>and fit a function to the</u> <u>data</u> (function may be linear, quadratic or exponential)	Represent data on a scatter plot by hand <u>and</u> by technology	
Interpreting and analyzing frequency (S.ID.5*)		Can do <u>all of</u> the following: Summarize categorical data for two categories in two-way frequency tables Interpret relative	Can do <u>two</u> of the following: Summarize categorical data for two categories in two-way frequency tables Interpret relative frequencies	Can do <u>one</u> of the following: Summarize categorical data for two categories in two- way frequency tables Interpret relative	
		frequencies in the context (joint, marginal, and conditional relative frequencies) Recognize possible associations and trends	in the context (joint, marginal, and conditional relative frequencies) Recognize possible associations and trends	frequencies in the context (joint, marginal, and conditional relative frequencies) Recognize possible associations and trends	

S.ID.1 Represent data with plots on the real number line (dot plots, histograms and box plots).

S.ID.2 Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.

- S.ID.3 Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).
- S.ID.6 Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.
 a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models.
 b. Informally assess the fit of a function by plotting and analyzing residuals.
 c. Fit a linear function for a scatter plot that suggests a linear association.
- S.ID.5 Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data.

Unit 4: Descriptive Statistics

B. Interpret Linear Models

ccss	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Create and analyze scatter plots (S.ID.7, S.ID.8, S.ID.9)	Can extend thinking beyond the standard, including tasks that may involve one of the following: Designing Connecting Synthesizing Applying Justifying Critiquing Analyzing Creating Proving	Interpret the slope and intercept of a linear model in context of the data Compute and interpret the correlation coefficient of a linear fit in context of the data Determine whether correlation implies causation in data	Identify the slope and intercept of a linear model <u>Compute the correlation</u> <u>coefficient</u> of a linear fit. <u>Determine if there is</u> <u>correlation in data</u>	Represent data on a scatter plot by hand and by technology	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1

S.ID.7 Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.

S.ID.8 Compute (using technology) and interpret the correlation coefficient of a linear fit.

S.ID.9 Distinguish between correlation and causation.

Unit 5: Transformations

A. Transformations

ccss	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Definitions of lines and angles (G.CO.1)	Can extend thinking beyond the standard, including tasks that may involve one of the following: • Designing • Connecting	Describe the following terms using points, lines, distance and circular arcs for <u>all</u> of the following: • Angles • Circles • Perpendicular Lines • Parallel Lines • Line Segments	Describe the following terms using points, lines, distance and circular arcs for <u>4</u> of the following: • Angles • Circles • Perpendicular Lines • Parallel Lines • Line Segments	Describe the following terms using points, lines, distance and circular arcs for <u>2</u> of the following: • Angles • Circles • Perpendicular Lines • Parallel Lines • Line Segments	Little evidence of reasoning or applicatio n to solve the problem
Represent, describe and compare transform ations (G.CO.2, G.CO.5)	 Synthesizing Applying Justifying Critiquing Analyzing Creating Proving 	Draw <u>and</u> describe transformations of reflections, rotations, translations, and combinations of these, including mapping a figure onto another.	Draw <u>or</u> describe transformations of reflections, <u>rotations</u> , translations, <u>and a</u> <u>combination of these</u> , including mapping a figure onto another.	Draw <u>and</u> describe a singular transformation of reflections and translations, including mapping a figure onto another. Given a function rule for	Does not meet the criteria in a level 1
		Describe reflections, translations, <u>and rotations</u> as functions that take points on the plane as inputs and give other points as outputs	Describe reflections and translations as functions that take points on the plane as inputs and give other points as outputs	Identify the outputs Identify transformations that preserve distance and angles to those that do not	
		Compare transformations that preserve distance and angles to those that do not	Describe transformations that preserve distance and angles to those that do not		
Describe symmetry (G.CO.3)		Describe <u>and</u> illustrate rotations and reflections of a rectangle, parallelogram, trapezoid, or regular polygon that carry each figure onto itself.	Describe <u>or</u> illustrate rotations and reflections of a rectangle, parallelogram, trapezoid, or regular polygon that carry each figure onto itself.	Describe <u>or</u> illustrate rotations or reflections of a rectangle, parallelogram, trapezoid, or regular polygon that carry each figure onto itself.	
Develop definitions of transform ations (G.CO.4)		Develop the definition <u>of</u> <u>all the terms</u> rotations, reflections and translations in terms of: Angles Circles Perpendicular lines Parallel lines Line segments.	Develop the definition <u>for 4</u> <u>of the terms</u> rotations, reflections and translations in terms of: • Angles • Circles • Perpendicular lines • Parallel lines • Line segments.	Develop the definition for 2 of the terms rotations, reflections and translations in terms of: Angles Circles Perpendicular lines Parallel lines Line segments.	
Properties of Dilations (G.SRT.1)		Verify that when a side passes through the center of dilation, <u>the side and its</u> image lie on the same line.	Given an image and the pre- image, <u>determine the</u> <u>center of dilation</u>	Perform dilation with a given center and scale factor on a figure in the coordinate plane.	

- G.CO.1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.
- G.CO.2 Represent transformations in the plane using, e.g., transparencies and geometry software; describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not (e.g., translation versus horizontal stretch).
- G.CO.5 Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.
- G.CO.3 Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself.
- G.CO.4 Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments.
- G.SRT.1 Verify experimentally the properties of dilations given by a center and a scale factor:

a. dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through the center unchanged.

b. the dilation of a line segment is longer or shorter in the ratio given by the scale factor.

Unit 6: Congruence

B. Congruence

CCSS	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Predict and decide congruency (G.CO.6) Corresponding sides and angles (G.CO.7)	Can extend thinking beyond the standard, including tasks that may involve one of the following: • Designing • Connecting • Synthesizing • Applying • Justifying • Critiquing • Analyzing • Creating • Proving	Use descriptions of rigid motions to predict the effect of a rigid motions on a figure Use the definition of congruence in terms of rigid motions to: • decide if two given figures are congruent • prove that corresponding sides are congruent and corresponding angles are congruent in a pair of congruent triangles	Use descriptions of rigid motions to <u>show</u> the effect of a rigid motions on a figure Use the definition of congruence in terms of rigid motions to: decide if two given figures are congruent show that corresponding sides are congruent and corresponding angles are congruent in a pair of congruent triangles	Use descriptions of rigid motions to <u>identify</u> the effect of a rigid motions on a figure Use the definition of congruence in terms of rigid motions to: decide if two given figures are congruent <u>identify</u> that corresponding sides are congruent and corresponding angles are congruent in a pair of congruent triangles	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1
Explain triangle congruence (G.CO.8)		<u>Prove</u> SSS, SAS, and ASA triangle congruence using rigid motion.	Identify all SSS, SAS, ASA, AAS, and HL triangle congruence <u>using rigid</u> <u>motion</u> <u>Identify missing parts based</u> <u>on a congruence postulate.</u>	Identify if triangles are congruent and by which method (SSS, SAS, ASA, AAS or HL)	

- G.CO.6 Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent.
- G.CO.7 Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.
- G.CO.8 Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions.

Unit 7: Constructions

C. Constructions

CCSS	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Construction of lines and angles (G.CO.12, G.CO.13)	Can extend thinking beyond the standard, including tasks that may involve one of the following: Designing Connecting Synthesizing Applying Justifying Critiquing Analyzing Creating Proving	Use a variety of tools to perform all of the following: Bisect a segment Construct the perpendicular bisector of a segment Construct an equilateral triangle	Use a variety of tools to perform 3 of the following: Bisect a segment Construct the perpendicular bisector of a segment Construct an equilateral triangle	Use a variety of tools to <u>perform 2</u> of the following: Bisect a segment Bisect an angle Construct the perpendicular bisector of a segment Construct an equilateral triangle	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1

G.CO.13 Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle.

G.CO.12 Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line.

Unit 8: Connecting Algebra and Geometry

ccss	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Prove using formulas (G.GPE.4)	Can extend thinking beyond the standard, including tasks that may involve one of the following: • Designing •Connecting •Synthesizing • Applying • Justifying • Critiquing	 Using coordinate geometry and the slope, distance and midpoint formulas to prove <u>all</u> of the following Segments on a coordinate plane are congruent Segments on a coordinate plane are perpendicular Segments on a coordinate plane are parallel 	 Using coordinate geometry and the slope, distance and midpoint formulas to prove <u>two</u> of the following Segments on a coordinate plane are congruent Segments on a coordinate plane are perpendicular Segments on a coordinate plane are parallel 	 Using coordinate geometry and the slope, distance and midpoint formulas to prove <u>one</u> of the following Identify if segments on a coordinate plane are congruent Identify If segments on a coordinate plane are perpendicular Segments on a coordinate plane are parallel 	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1
Prove and use parallel and perpendicul ar lines (G.GPE.5)	 Analyzing Creating Proving 	Prove <u>a pair of lines</u> are parallel or perpendicular using slope Write the equation of a line that is parallel <u>and</u> perpendicular to a given line that passes through a given point	Given the slope of 1 line, prove if a pair of lines are parallel or perpendicular <u>Write</u> the equation of a line that is parallel <u>or</u> perpendicular to a given line that passes through a given point	Given the slope of a pair of lines, identify the lines are parallel or perpendicular Identify the equation of a line that is parallel or perpendicular to a given line that passes through a given point	

G.GPE.4 Use coordinates to prove simple geometric theorems algebraically.

G.GPE.5 Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point).

Unit 8: Connecting Algebra and Geometry

B. Perimeter and Area

ccss	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Perimeter and area (G.GPE.7)	Can extend thinking beyond the standard, including tasks that may involve one of the following: • Designing • Connecting • Synthesizing • Applying • Justifying • Critiquing • Analyzing • Creating • Proving	Using coordinate geometry and the Pythagorean, slope, distance and midpoint formulas to do_both of the following • find the perimeter of polygons. • find the area <u>of</u> <u>polygons using</u> triangles and rectangles	Using coordinate geometry and the Pythagorean, slope, distance and midpoint formulas to do <u>both</u> of the following • find the perimeter of polygons. • find the area of triangles and rectangles	Using coordinate geometry and the Pythagorean, slope, distance and midpoint formulas to do <u>one</u> of the following find the perimeter of polygons. find the area of triangles and rectangles	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1

G.GPE.7 Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula.★